Sandia
Exceptional service in the national interest National

Laboratories

XPRESS Project Update

Ron Brightwell, Technical Manager
Scalable System Software Department

& 4\% U.S. DEPARTMENT OF ///A ' ' D(}’sl
g : EN ERGY VA'IN D’fé Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
%,Ej ‘National Nucloar Security Administration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Agenda

10:00 - 10:15 * Project Overview * Ron Brightwell
10:15-10:40 -+ Runtime System * Thomas Sterling
10:40-10:50 + OS * Ron Brightwell

10:50-11:10 ° Performance Infrastructure < Al Malony
11:10-11:20 - Legacy Application Support ¢ Barbara Chapman
11:20-11:30 * Applications * Mike Heroux

Project Goal

= R&D OpenX software architecture for exascale computing

= Four thrust areas

= HPX runtime system based on the ParalleX execution model that
supports dynamic resource management and task scheduling

= LXK lightweight operating system based on the Kitten OS that exposes
critical resources to HPX runtime system

= Runtime Interface to OS (RIOS) definition and description of the
interaction between HPX and LXK

= Support for legacy MPl and OpenMP codes within OpenX

-

o onk (AR
1 Lsu RIDGE couminiic O

Uniqueness of XPRESS

= Guided by ParalleX holistic parallel execution model

= QOpen-X software spans entire stack

Lightweight OS designed for dynamic adaptive runtime systems (LXK)

Runtime Interface to the OS (RIOS)

Enables efficient interaction between runtime and OS for event-driven
adaptivity

Dynamic, adaptive runtime system (HPX)

Integration of performance instrumentation and control throughout
software stack (APEX, RCR)

Low-level application programming interface (XPI)
Support for native applications and legacy applications

= Targets full system capability

OpenX Software Architecture

Legacy
Applications
OpenMP MPI Applications
——> XPI <
YV VoY v
AGAS LCO

e name space |dataflow, futures

Runtime processor synchronization
System - - <+

Instances Lightweight Parcels
Threads message driven
context manager| computation
7

Operating System Distributed Framework s
Operating I
System . Address 3
Instances . Task recognition space control g
Memory bank (OS] Network @
control thread drivers ~
A';';:ﬁ:ﬁ;?e +10% nodes x 10% cores / node + integration network

-
XPRESS Update - April 10, 2014

Year 2 Activities

ParalleX Execution Model

HPX-3

HPX-4

LXK

RIOS

Finish description of ParalleX document
Incorporate locality management and introspection

Continue to update, develop, and improve HPX-3
Implement HPX-3 with XPI

Develop the HPX-4 threading system

Continue developing HPX process

Adopt IU Parcel port

Work with RENCI to integrate power management into HPX
Work with OU to make HPX APEX aware

Work with SNL to implement HPX on LXK

Work with UH to provide legacy support

Implement Parcels

Implement Local Control Objects

Implement GAS

Implement interface to LSU’s thread package
Implement interface via RIOS to LXK

Deploy LXK virtual cluster environment
Demonstrate HPX-4 on LXK
Integrate instrumentation capability into LXK

Refine RIOS specification
Protocol specification
Use specification to guide design of interface LXK and HPX-4

Year 2 Activities (con’td)

APEX

Introspection

Legacy Migration

Applications
(Year 2 start)

Software Integration

Implement more robust version of APEX with HPX-4

Create a performance data access API for evaluating performance metrics mapped for lower-level
measurements during execution to allow for performance data introspection

Develop interfaces for XPI to specify performance requirements and create performance data views
Define performance introspection requirements and architecture

Develop and integrate contention/energy models into HPX and APEX
Improve and increase data source for models by integrating into LXK
Finish design and start implementing multi-node data collection and contention/energy models

Implement in OpenUH for supporting OpenMP 3.1 using HPX runtime

Evaluate performance of HPX-OpenMP and OpenUH-OpenMP using benchmarks and applications
Enhance performance of OpenACC complier and OpenMP 4.0 accelerator support in OpenUH
Data-driven computation model across cluster nodes

Develop MPI collective communication operations based on HPX/XP| operations

Finalize runtime support for MPI libraries in HPX

XPI mini-apps

Fusion energy apps

Climate science and nuclear energy apps
Collaboration with Co-Design Centers
Collaboration with other X-Stack projects

Develop plan for integrating software components
Deploy and support application development and evaluation testbed

Status

= Met all Year-1 milestones and deliverables
= On track to meet all Year-2 milestones and deliverables

= Several key documents created and/or updated
= Significant progress on RIOS specification
= XPI Draft Specification version 1.0
= Updated draft of ParalleX Execution Model specification

= Significant progress on several software components
= Several cross-institutional meetings and interactions
= Application work underway

Publications

= Kevin Huck, Sameer Shende, Allen Malony, Hartmut Kaiser, Allan Porterfield, Rob Fowler, and Ron
Brightwell. An Early Prototype of an Autonomic Performance Environment for Exascale
In Proceedings of the 2013 International Workshop on Runtimes and Operating Systems for
Supercomputers.

= Thomas Sterling, Matthew Anderwson, P. Kevin Bohan, Maciej Brodowicz, Abhishek Kulkarni, and Bo
Zhang. Towards Exascale Co-Design in a Runtime System. In Proceedings of the Exascale Applications and
Software Conference, Stockholm, Sweden, April 2014.

= Matthew Anderson, Maciej Brodowicz, Abhishek Kulkarni, and Thomas Sterling. Performance Modeling of
Gyrokinetic Toroidal Simulations for a Many-Tasking Runtime System. In Proceedings of the Fourth
International Workshop on Performance Modeling, Benchmarking, and Simulation of High-Performance
Computer Systems, Denver, CO, November 2013.

= Timur Gilmanov, Matthew Anderson, Maciej Brodowicz, and Thomas Sterling. Application Characteristics

of Many-Tasking Execution Models. In Proceedings of the 19t International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, NV, July 2013.

= Matthew Anderson, Maciej Brodowicz, Thomas Sterling, Hartmut Kaiser, and Bryce Adelstein-Lelbach.
Tabulated Equations of State with a Many-Tasking Execution Model. In Proceedings of the Workshop on
Large-Scale Parallel Processing, Boston, MA, May 2013.

Miscellaneous Activities

= Strong synergies with other DOE programs
= Hobbes OS/R project
= Execution Models
= PSAAP-II Notre Dame project

= DOE Design Forward
Ongoing discussions with AMD on HSA/XTQ
Sandia is a member of Heterogeneous System Architecture Foundation

= Participation on the OpenMP Architecture Review Board

= Sandia and U. Houston are Auxiliary Members of ARB
= Completed application-facing runtime issues on xstackwiki
= Contributed to ASCR Runtime Summit

Summary

= On schedule to meet research goals
= Working prototypes of all major components

= Dramatically improved efficiency and performance for several
software components

= Demonstrated distributed message-driven computation
= Kitten/LXK on track to support HPX-4 by end of Year-2

" Preparing to do Sandia-led software integration

= Applications work underway

" |mportant pathfinding discoveries along the way

= Performance limitations of model, runtime system, hardware
= Learning how OS and runtime serve each other

HPX: An Exascale Runtime Software Package

Thomas Sterling
Professor of Informatics and Computing, Indiana University

Chief Scientist and Executive Associate Director
Center for Research in Extreme Scale Technologies (CREST)
School of Informatics and Computing
Indiana University

April 10, 2014

I'IJ CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY
Pervasive Technology Institute

Key Strategic Points/Accomplishments

 On schedule (SOW) with research, development milestones and deliverables
 Runtime System Software Prototypes
— Working cross-nodes parcels (message-driven) transport layer
— GAS cross-node framework
— Multi-threads scheduling package
* XPI specification
e XPI first function implementation with micro-apps
» Software architecture: module functionality and interfaces
* Enhanced execution model description
* Interrelationship with light-weight kernel OS
* Experimental evaluation for validation and performance

* Relevancy/engagement with other DOE Programs
— Co-design, Execution models, OS/R, PSAAP2

'.IJ CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

The Negative Impact of Global Barriers in Astrophysics Codes

Computational phase diagram
from the MPI based GADGET
code (used for N-body and SPH
simulations) using 1M particles
over four time steps on 128
procs.

e
I

0
‘ | (At

I
“wi

'*

T
i

process

THHH

FIA I H‘H‘
FEEECEAFFFFFER

Red indicates computation
Blue indicates waiting for
communication

0 0.2 0.4 0.6 0.8

simulation time [s]

I.IJ CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Semantic Components of ParalleX

/

RTI

RTI

=~
RAMO

»il0 ~

Locality
Process

Local Memory
LCO
Accelerator

CENTER FOR RESEARCH

IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

N)

DTA

Thread

Suspended Thread
Local Memory Access
AGAS Address Lookup
Local Action

Parcel

\

=

&

w

v

LTI: local thread instantiation

RTI: remote thread instantiation

RAMO: remote atomic memory operation
DTA: depleted thread activation

DOT: dataflow object trigger

FVA: future value access

PERC: percolation

White indicates waiting

for communication
threads spread across

Computational phases
for LULESH (mini-app
for hydrodynamics
codes).
Red indicates work
Overdecomposition:
MPI used 64 process
while HPX used 1E3
oo: 64 cores.

1
0.0004

Overlapping computational phases for hydrodynamics

o
(]

S9SS8001d

10
20
40
50
60

o o o o o
N (2] - wn O

o
-~

S98S8001d

0.0002 0.0003
Execution time (seconds)

0.0003 0.0004 0.0005 0 0.0001
Execution time (seconds)

0.0002

0.0001

HPX

MPI

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

P

sive Technology Institute

Perva

XPI

HPX
LSU/IU
LCOs ¢ »| Threads
wu/u
uo/Iu —X
U APEX ;%-§ ?
O
uo/Iu A =
//MT
Parcels |« > » AGAS
UO/SNL RENCI/UO
Sandia/lU/LSU /
RIOS
RCR

LXK Sandia/RENCI

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

HPX Progress

* Overall architecture that integrates:
— Threads
— Local Control Objects (LCOs)
— Performance Measurement
— Parcels
— Global Address Space (GAS)

* The network layer has been updated
— Made it reentrant
— Implemented a transport channel for large messages

« We implemented remote thread spawns & future setting over the
network

 We created a new type of LCO called versioned gates that control groups
of futures

lll CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

HPX - Threading Subsystem

* Fully refactored code base to improve performance,
modularity, and maintainability

— Performance improved by 20-30%: overall thread (scheduling)
overheads down to 900 ns per thread (create, schedule,
execute, and delete thread)

— Different schedulers are available (LIFO, FIFO, with or without
thread priority, etc.)

— Can be switched at runtime, easily extensible by user policies

 Worked with RENCI to integrate power and contention
management into schedulers

 Worked with UO to instrument threading subsystem and
integrate wit APEX

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

HPX - Instrumentation

 HPX exposes a large set of Performance Counters

— Uniform framework for exposing arbitrary system
information

— Examples: AGAS, threading/scheduling, parcel transport

— Allows for runtime introspection as a precondition for
runtime dynamic resource management

 APEX uses those to expose diverse set of information
to tools like TAU

 HPX hooks into commercial tools like Intel® Amplifier
and Intel® Inspector

— Debugging support: memory checking, threading
(deadlock) analysis, race condition checks, etc.

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

HPX — Latest Exemplar Results

Performance in TFLOPS

Weak Scaling Results for HPX and MPI N-Body Codes

(Host Cores only)

500
400

——HPX

300 ——MP|

200 Peak
100
0

0 200 400 600 800 1000

Number of Nodes, 16 Cores Each

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

GLUPS

Jacobi Smoother - 8096x8096 - 1000 Iterations -
Xeon Phi

B omp stream
- 4 threads
per core

B omp static -
4 threads per
core
omp
dynamic - 4
threads per
core

B hpx- 4
threads per
core

Cores

Impact

* There is a path forward for loosely coupled integration of
software components across the entire XPRESS project team

e HPX-4 runs in distributed environments now

— Up to 512 cores (16x32) on InfiniBand
— Up to 64 cores (4x16) on Cray Gemini

* Network performance has increased by an order of
magnitude

e Applications have more data structures available to them
using futures

— That suit the needs of real-world scientific applications

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Parcels

» Software component for cross-nodes transport layer

— Transport layers:

* Photon (infiniband and Gemini)
— Experiments with unified runtime/network software architecture

e Portals-4

— Final transport for commonality, portability, stability

« TCP/IP

— Platforms
* X86 cluster (Cutter)
* Cray XE6/XK7 (Big Red)

* Message-driven computation
— Instantiates threads on remote localities (nodes)
* Global data access
— Able to directly read and write data from all localities

* Current support for PGAS
— Temporary static implementation
— Will be replaced with AGAS for dynamic migration of virtual data
— Distinction is transparent to user

lll CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

XPI Specification (r313)

» Currently supported capabilities
— Processes
— Parcels
— Threads
— AGAS
— LCOs
* Current and Future development
— Locality management
— Integrated error handling
— Customization (thread priorities, distribution, etc)
— Introspection (load balancing, locality management, etc)
- 10
* Public Specification is in Beta
* Implement XPI - Released mid-March: HPXPI 0.1
« Almost complete, fully open source implementation of XPI specification on top of HPX
« Benefits from high performance characteristics of HPX

lll CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

libXPI Native Implementation

* Implements (targets HPX)
— Parcels
— Lightweight Threading (with local task sharing)
— PGAS (with block cyclic distribution)
— LCOs (futures, semaphores, and gates)
— Networking (SMP, MPI, Portals, Photon)
* In development
— Process termination detection
— Continuation stacks
— Lazy thread stack binding
— AGAS
— Test suite
« Initial release this spring
— Concurrent with XPI Specification 1.0 gold release

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY
Pervasive Technolog sti

XPI LCOs

Similar to monitors 1 2 N
— Enqueue continuation parcels
— Interface is serializable O,
— User-definable polymorphic (Inputs
behavior
Internal State LCO

Inputs modify internal state

Trigger state copies value to @ y Continuations
continuation parcels O .Trigger
Runtime sends continuation
parcels \ o [
Continuations instantiated as)/GD
lightweight threads, or activate V/) v v
depleted threads. Lo Threads /
N N\ /
0 @)
1 2 M

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Experimental Results

B0 e T g s ERTITITIIN PP P S IECI IR P P :
E Qthreads —+— : : : : ;

; OpenMP —o— : : : g : All cases run on 16 cores (1 locality)
50 Cilk —¢— ... R R Y 4 :
; TBB —&— : : : : :

HPX 5 (Dec 2013) —5—

5 40f HPXS(curent) —e— /)

() C : : :

. 5 5 5 : 5

- Zoom-in on best performers

2 20k S S S S S €./ R T — — — — 1
2 : : : : : : : : r TBB —%—

3 HPX‘5 (current) —8—
10 E | | |

22 23 24 25 26 27 28 29 30
Fibonacci fib(n)

Total time (sec)

0.001 i i i i i i
22 23 24 25 26 27 28 29 30
Fibonacci fib(n)

l[l CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Coumsy cf Matt Anderson, Indiana ‘University

Experimental results on Overhead

"" 50
' Qthreads —+— Qthreads —+— : i
OpenMP —&— - 45 OPENMP O oot
Cilk —¢— Cilk —>¢— : d
TBB —&— 40 TBB N s
HPX 5 (Dec 2013) —&— HPX 5 (Dec 2013) —&— :
@ 3 9 E § :
o :yl . R Sy :
(] o N N H
£ £ 25
= s : : :
_g .. g 20
= = z z :
15 Froovereesdinn bl i :
10
5
o '
10000 100000 le+06 le+07 100000 1e+06 1le+07
Parallel spawn (#tasks) Sequential spawn (#tasks)

CENTER FOR RESEARCH , , ,
| IN EXTREME SCALE Coumsy cf ‘Matt illnc(erson, Indiana ‘Umversuy

TECHNOLOGIES

‘ INDIANA UNIVERSITY

Pervasive Technology Institute

PRIDE of Discovery

 PRIDE — Parallel Resource Integration for Distributed
Execution

e Extends ParalleX Processes up to encompass system
* Integrates LXK and HPX
* Exhibits single-system image

e Can provide global scalable extreme scale “System
Global OS”

* A natural occurring consequence of sophisticated
execution model and system software architecture

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Future Work

* Evaluating selected algorithms for refactoring solvers

— Engagement with co-design centers

— Mini/proxy apps
* ParalleX locality sensitivity, resource allocation, prioritization
* XPI specification refinement and implementation optimization
e HPX-4 system integration (SNL led) from LSU/IU components

* |Integration of introspection components UO/UNC
— APEX UO
— RCR UNC

* Detailed specification of RIOS protocol

* Software Stack Build
— LXK
— HPX-4
— XPI

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY
Pervasive Technology Insti

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Sandia

Exceptional service in the national interest National
Laboratories

XPRESS OS Update
April 10, 2014

K% U.S. DEPARTMENT OF V YA} DQ/'\‘;
% j EN ERGY ///’ v" ":ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
National Nuclear Security Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

LXK/RIOS Research Goals h) ..

= XPRESS aims to increase synergy of compute node OS kernel
and user-level runtime systems
= Today: Runtime must work around host OS, assume worst case
= Vision: Runtime cooperates with host OS, delegated more control

= Key RIOS drivers
= Runtime needs guarantees about resource ownership and behavior
= OS needs way to shift resources between multiple runtimes
= Two-way interfaces needed for key resources

Runtime tells OS what it needs, OS tells runtime what it gets

OS remembers original request, notifies runtime if more resources
become available. Notifies runtime of resources need to be reclaimed.

= Event-based protocol to notify of dynamic events (e.g., power state
change, transient error)

= XK = Kitten + RIOS

Two-level Thread Scheduling

LXK OS Kernel

OS Thread | OS Thread | OS Thread | OS Thread
0 1 2 3
A A
Gl\llleorge You Glﬁeonée You
2 get 2 a get 2
threads threads
v v
OS Thread | OS Thread OS Thread | OS Thread
0 1 2 3
[— [[
E ——] E
HPX Process A HPX Process B

Sandia
m National

Laboratories

OS threads track hardware
contexts of execution
(e.g., physical cores)

Runtime requests OS
threads from OS, runtime
schedules its task queues
onto OS threads

RIOS defines protocol
runtime uses to ask for OS
threads, protocol OS uses
to tell runtime what it gets

34

Two-level Thread Scheduling (2) M.

LXK OS Kernel = OSremembers original request.
In this case, each HPX process
OS Thread | OS Thread | OS Thread | OS Thread could use all available OS threads
0 1 2 3
but each initially allocated only
1 1 two
'm done OK, Here's Wow, = HPX process A gives up an OS
with OS thanks another Thanks! 4 decid I
thread 0 OS thread - thread, LXK decides to reallocate
v ¥ it to HPX process B
OS Thread OS Thread | OS Thread " HPXprocess B initializes a new
1 2 3 task queue and starts scheduling
— aaa aa tasks on the new OS thread it
— was allocated
OS Thread
HPX Process A 0
—)

Sandia
National _
Laboratories

h

Two-level Thread Scheduling (3)

LXK OS Kernel

= (S can ask a runtime for OS

OS Thread | OS Thread | OS Thread | OS Thread threads back at any time
0 1 2 3
= Runtime must cooperate or
() | () be killed by OS
| need 2 OK, here’'s Give me You _ , _
OS threads| |OS threads all OS ot 2 = (OS gives runtime some time
back 2 and 3 threads 9 to react, move tasks off of
- A the OS threads being
OS Thread | OS Thread OS Thread | OS Thread returned
0 1 2 > = |n this example HPX
— — — % Process B arrives at some
time after HPX Process A;
HPX Process B OS allocates B two OS

[

]

[

0OS ead
2

——
oS ead
3

threads that it reclaims
from A

36

Areas Covered by RIOS)

" Legacy support services

= Job management

* Thread management

= System topology and locality
= |ntrospection

= Memory management

= Network interface

= Filel/O

= Energy management

37

RIOS Current Status h) e,

= Current draft outlines requirements and gives prose
description of interfaces and protocols

" FY14 goal to formalize into a real specification that somebody
could implement

= Recent focus on thread management and memory mgmt.

= Created several working documents to drive discussions
“Thread Management in Kitten”, “Memory Management in Kitten”
IU write ups describing ParalleX process model and AGAS

= LSU providing input on HPX-3 thread management requirements

38

Porting / Re-Architecting RCR for LXK

Current RCR architecture (pre-XPRESS)
= User-level daemon with root privilege
= Makes high-frequency system calls to Linux (polling)
= Relatively high overhead (~20% of a Xeon core)

Goal: Dramatically reduce overhead, eliminated daemon

Plan: Split RCR into two pieces

= 1) LXK internal module, timer interrupt used to poll counters,
include simple logic to calculate derived metrics / statistics

= 2) User-level library, implements interfaces for configuring LXK
module, reading collected data via shared memory mapping with
kernel, interface with RIOS/APEX

= Targeting end of April for initial implementation

h

Sandia
National _
Laboratories

39

Virtual LXK Development Environment

= Needed easier way to deploy LXK to collaborators
= Use bundled set of virtual machines: 1 Linux, N LXK

Sandia
National _
Laboratories

= @Goal to provide functional development environment, reasonable performance

= |nitial development in FY13, continuing in FY14
= Brian Kocoloski (U. Pittsburgh) — Portals4 networking and job launch
= Jorge Cabrera (Florida Intl. U.) — 1/O forwarding layer from Kitten to Linux

Host(s)
Examples: a laptop, server, ec2 instances

Virtual

Boot Servers Ethernet
Filesystem Network

Job Launcher

Community / Vendor Interactions @i

= Met with Intel March 11, 2014 (telecon)
= OS Pathfinding group evaluating Kitten for mOS

= Met with AMD February 5, 2014 (SNL/NM)

= Update/discussion on Hobbes and Kitten

= Met with ARM December 18 (Austin)
= Update/discussion on Kitten ARM port

= Hosted Hermann Hartig at SNL/NM November 14-15

= Learned about European Exascale OS R&D

= Kitten/LXK overview invited talk at Hermann Hartig’s HPC OS
workshop in Israel, Dec . 11, 2013 (via Skype)

= Kitten/LXK overview talk to Argo team, Oct. 28, 2013

41

Conclusion)

= XPRESS aiming to increase synergy of compute node OS
kernel and user-level runtime systems
= Today: Runtime must work around host OS, assume worst case
= Vision: Runtime cooperates with host OS, delegated more control

= Developing RIOS specification (Runtime Interface to OS)

= Provides runtime with guarantees about resource ownership and
behavior

= Two-way interfaces
Runtime tells OS what it needs, OS tells runtime what it gets

OS can ask runtime to give up resources, gives runtime time to react

= Event-based notification of dynamic events (e.g., P-state change)

= Ongoing LXK software development in context of overall
XPRESS project

42

XPRESS : Introspection overview

Allen D. Malony, Allan Porterfield,
Sameer Shende, Kevin Huck, Nick
Chaimov

OpenX Architecture and APEX/RCR’s

Role

Legacy I{
Applications i
i
i
i
OpenMP | MPI :
i
< 1
> XPI 1
i
i
YV Vv v]
1 AGAS Lco |
name space |dataflow, futurbs
Runtime processor synchronizatidin
System < = = Bl
Instances Lightweight Parcels
Threads message driven
\ context manager| Ccomputatio
P44 P hm §
(; g _— I
Operating System Distributed Framework 5
Operating < I T
Systomn i Address | &
Instances Task recognition space control S
Memory bank 0s Networll 2
\ control thread drivers] -
] /
Hardware g e ol
Aehitochite +10° nodes x 10° cores / node + integration ngtwork
T

---~

an = - -

< 0S (LXK OS)
<Hardware

Logically, APEX supports
introspection and adaptation
across OpenX layers

Introspection Overview

The XPRESS project provides the opportunity for all layers of the
software stack to not just inter-operate, but also
enable introspection between layers

The APEX component encapsulates the mechanisms
for introspection and for dynamic adaptation at runtime

APEX is designed to maintain and/or observe the
running performance state of all XSTACK layers:
— Application level (e.g., XPl interface, events in HPX)
— System level (e.g., RIOS interface, LXK, hardware)

APEX provides an interface for:
— Submitting state changes (observations to analyze)
* Observable HPX state changes
* RCRblackboard to observe OS/system changes
— Registering adaptive policy criteria with a Policy Engine
— Produce events to change performance
* Events to HPX
* Use RIOS to inform OS

XPRESS Interfaces : APEX interactions

Threads

RCR client

Parcels

RCR Blackboard

Existing link -==---- In development <«— Event <+ Feedback

APEX architecture

Two key components provide APEX infrastructure

Event-driven execution model

— Thread Manager currently supported

 thread registration, counter sampling, activity start/stop
events

— Plan to add LCOs, Parcels, AGAS, XPl events

Periodic interruption / interrogation of the
overall system state by an out-of-band thread

— Process-wide view of thread activity, system health

Global APEX operation provided HPX

— Enables APEX to develop monitoring, in situ analytics,
and policy responses that will run across system

HPX ITT support

HPX3 Threads are instrumented with Intel®
Instrumentation and Tracing Technology (ITT)

APEX implemented the ITT API to capture
events in the HPX3 Thread Scheduler

— Developed ITT support in TAU
Provides “hooks” into HPX components

For other components, to be replaced with
simpler APEX event API

TAU Integration

* The TAU Performance System has been
integrated into APEX as an event listener,
providing both profile and trace data collection
for post-mortem performance analysis

©® O O TAU: ParaProf: Function Legend: octopus-build/hpx...

©® O O TAU: ParaProf: /Volumes/khuck@mist.cs.uoregon.edu/src/hpx/oc...

Metric: TIME
Value: Exclusive

Std. Dev. [=
Mean []
Max [—
Min —
node 0, thread 0
node 0, thread 1
node 0, thread 2
node 0, thread 3
node 0, thread 4
node 0, thread 5 e
node 0, thread 6 e
node 0, thread 7
node 0, thread 8
node 0, thread 9
node 0, thread 10
node 0, thread 11
node 0, thread 12
node 0, thread 13
node 0, thread 14

node 0, thread 15 Performance

node 0, thread 16
node 0, thread 17

node 0, thread 18 on eaCh
node 0, thread 19
node 0, thread 20 th read
node 0, thread 21
node 0, thread 22
node 0, thread 23
node 0, thread 24
node 0, thread 25
node 0, thread 26
node 0, thread 27
node 0, thread 28
node 0, thread 29
node 0, thread 30
node 0, thread 31]
node 0, thread 32]

b
Wil

UUUUUUUUUUUUUUUUUUUUUUUU
LT i T g T

O000 OO0O0000000000 000000

call_here_action
call_shutdown_functions_action
call_startup_functions_action
fstream_perform_start_write_action
fstream_perform_stop_write_action

hpx_main

io-thread

load_components_action

main-thread
octopus_octree_server_apply_action
octopus_octree_server_child_to_parent_state_i

octopus_octree_server_get_offset_action
octopus_octree_server_link_action
octopus_octree_server_mark_action
octopus_octree_server_populate_action

octopus_octree_server_remark_action

octopus_octree_server_require_child_action
octopus_octree_server_require_corner_child_a
octopus_octree_server_require_sibling_child_a
octopus_octree_server_save_action
octopus_octree_server_set_sibling_action
octopus_octree_server_step_recurse_action
octopus_octree_server_tie_child_sibling_action
octopus_octree_server_tie_sibling_action
parcel-thread-tcp

hpx_lcos_server_barrier_create_component_action

njection_action

octopus_octree_server_clear_refinement_marks_action

octopus_octree_server_receive_child_flux_action
octopus_octree_server_receive_child_state_action
octopus_octree_server_receive_ghost_zone_action

octopus_octree_server_remove_nephew_action

ction
ction

Figure: Octopus HPX3
application running on
12 core Intel® Xeon
X5650 2.67GHz system
with 24 hardware
threads

pre_main
primary_namespace_service_action
run_helper

set state for active thread
symbol_namespace_service_action
task_base::apply

Performance
events

timer-thread
worker-thread

OEeOEEOEEECOOEONEEOOEDOECOOROREDOOROORDONE

= N N w
« o w o

Concurrency

_

Concurrency Example

Test APEX event handler and periodic interrogation support

APEX start and stop events are passed from HPX Thread Scheduler
— Plugin responds to events
— Maintains a timer stack for each thread

Plugin also periodically interrogates state of all threads
Results in timeline of concurrency activity

Figure: Octopus HPX3
application running on

| 12 core Intel® Xeon
| | | X5650 2.67GHz system
“ | i with 24 hardware
H M threads
Time -
ot = General objective is to capture and

octopus octree server step ecurse acion .
ceiops etres server TRCERE ghuszone acien analyze the dynamic state of
sctopus.octr e e e Ehaes e acon - ,

T e el) — application to evaluate behavior

e and possible take actions to improve

hpx::actions::result_action3 s

RCR Integration

Provides “whole node” view of performance state

RCR has the same lifetime as the Operating System, most of
APEX is associated with an application’s lifetime

RCRblackboard provides shared memory region for
communicating across process boundaries

LXK monitors OS resources, hardware resources, power
consumption, and so on
— Reads, writes to/from RCRblackboard
The APEX RCR Client runs in user space, monitors OS & HW
state, reports HPX, XPIl and Application state (through API)
Policy Engine determines when to respond to state changes
— As specified in policy definitions

RCR

* Integrated with LXK

— 2 components

e LXK module — writes system counter values and derived
metrics into shared memory page (RCRblackboard)

e RIOS library routines — make RCRblackboard values
visible to user level applications
— Counters/metrics tracked identified during LXK
module initiation

— RIOS provides mechanism to pass
information(events) back to the OS though
RCRblackboard — allowing introspection to
dynamically modify OS behavior

Policy Engine

The Policy Engine subcomponent will also be one
of the internal event listeners registered in APEX

Policy is set in APEX by registering test and action
functions with the engine

Either periodically or on an event, the Policy
Engine executes the test functions, and if they
return true the action function is executed

Any XSTACK layer component will have the
capacity to respond to the performance status
of any other layer as necessary

XPI, Application Interface Support

* XPI will also report state changes to APEX,
respond to policy actions when appropriate

* Application developers may opt to define
policy

* Need to specify user-level APl for defining,
registering application policy

Future Plans

Refine APEX API

Add event reporting from LCOs, Parcels, AGAS
Add event reporting from XPl implementation
Define API for defining policy by application
Redesign RCR Client interface in APEX

Identify, specify default policy for OpenX

— Non-trivial, requires close interaction with XPRESS
partners to understand stack interdependencies

— Hardware dependent

Expand RIOS API to support communication with
RCRblackboard

Prototype LXK module to fill RCRblackboard system-
level data

Legacy migration
XPRESS review

Barbara M. Chapman, Edgar Gabriel,
Yonghong Yan, Jeremy Kemp, and Priyanka
Ghosh

University of Houston
April 2014

Legacy migration: replacing OpenMP runtime
with HPX and XPI

OpenUH OpenMP Compiler

OpenUH libopenmp -

Runtime

XPI

OS/system

* Next steps
— OpenMP runtime on top of XPI

— OpenMP interoperability with HPX and other
runtime

Microbenchmarks: hpxMP vs OpenUH libopenmp

EPCC Syncbench and Taskbench: <1 means hpxMP is better than libopenmp

REDUCTION

ATOMIC
LOCK/UNLOCK
CRITICAL

SINGLE

BARRIER

PARALLEL FOR

FOR

PARALLEL

LEAF TASK TREE
BRANCH TASK TREE
NESTED MASTER TASK
NESTED TASK

TASK BARRIER

TASK WAIT
CONDITIONAL TASK
MASTER TASK BUSY SLAVES
MASTER TASK

PARALLEL TASK

0.001 0.01

o
[
[y
[y
o
[y
o
o

1000

OpenMP for accelerators

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

while ((k<=mits)&&(error>tol))

{
/] a loop copying uf][] to uold[][] is omitted here

#|.o.ragma omp target device(gpu0)

#pragma omp parallel for private(resid,j,i) reduction(+:error)

for (i=1;i<(n-1);i++)

for (j=1;j<(m-1);j++)

{
resid = (ax*(uold[i-1][j] + uold[i+1][j))\

+ ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j

u[i][j] = uold[i]j] - omega * resid;
error = error + resid*resid ;

} /] rest of the code omitted ...

}

Early Experiences With The OpenMP Accelerator Model; Ct
and Barbara Chapman; International Workshop on OpenM|

100

90

80

70

60

50

40

30

20

10

0

Jacobi Execution Time (s)

—+—first version / /

target-data / /

—&—Loop collapse using linearization with static-even scheduling

Loop collapse using 2-D mapping (16x16 block) / /

Loop collapse using 2-D mapping (8x32 block) /

Loop collapse using linearization with round-robin sched/uMg /

VAR

/

—

128x128 256x256 512x512

Matrix size (float)

1024x1024 2048x2048

Compiler support for OpenMP and OpenACC

* Need to achieve coalesced memory access on GPUs

#pragma acc loop gang(2) vector (2)
for (i = x1; i < X1; i++) {
#pragma acc loop gang(3) vector (4)

for (j = yi; j < Y15 j++) {...... }
¥ " PGI-00
- PGI-03
- - . it
i ~—
Q [
} (XX
c B
i+1 P oed
x5
= — 8
. — %
= = o
block(0,0) block(0,1) block(0,2) >:4::2:
i:0,4,8,.. i:0,4,8,... i:0,4,8,... A
j:0,12, .. j:4,16,.. j:8,20, ... K&
Grid G
block(1,0) block(1,1) block(1,2)
:2,6,10,... i:2,6,10,... :2,6,10,... A A
j0,12,... j:4,16, ... j:8,20,... Dy, 0
9.
? 1000 Total Time
Map2_1 @~ Map3_1 N
30 —M:giz R Mggiz e Wavel3pt
Map2_3 mmm Map3_3 mmm
28 FMap2_4 =0
100
26
g ¥ Figure: Wavel3pt
v 22 4 10
€ €
F oo E
18
1
16 % | o5
1 ﬁ K ‘:':;::
12 Egﬁ-g ' o 01 III. o0
Jacobi DGEMM Gaussblur Stencil Wavel3pt
Benchmark

Fig. 9: Double nested loop mapping.

Compiling a High-level Directive-Based Programming Model for GPGPUs; Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita
Chandrasekaran, and Barbara Chapman; 26th International Workshop on Languages and Compilers for Parallel Computing (LCPC2013)

I PGI-00 ——
r PGI-03
|OpenUH BXX&X

Fig. 10: Triple nested loop mapping.

My M
9, (S)
/N " . L

Speedup Vs 1 thread

Data-driven async tasks

IRR[ER

¥
¥
AEEEREEE

N
~
|

1 2 4 8 16 24 32 48
Number of threads

17
]
|||||||||£:
20

GNU —— 24

21
22
23
24
25

©CoO~NOOOAWN =

Intel =3¢
OpenUH-without ext -
OpenUH-with ext -E}

SUN-Oracle
PGI -0
OmpSs -

#pragma omp parallel

#pragma omp master

for (i=0; i<matrix_size; i++) {

for (i=1;i<M;i++){

}

0CK k% x/

rocessing block on row s/

...............)

/*** Elimination of Global Synchron@

/+*%xx Processing remaining inner Dblock s/

for (i=1;i i+
or (j=1;j<M;j++){
#pragma omp task in(2%) in(2*j+1)
ocesslnnerBlock (..........

22

OpenUH-witI'éext —

20

/ QUARK

18

16
14

16
Number of threads

24

32

48

Support for Open MPI on HPX/XPI

* Work focuses on taking advantage of HPX
features in Open MPI Runtime

— Application would be able to utilize features of MPI
and HPX simultaneously
* Two options being evaluated:

— Replace entire RTE of Open MPI with a slim layer
based on HPX -> daemonless approach

— Add new components in ORTE to support HPX

* Operational prototype expected by the end of
the summer

XPRESS Apps Efforts

Scope:
-~ Explore app development alternative to “traditional MPI+X".
— Question: Can a qualitatively different approach (Parallex-based):
» Exploit untapped parallelism?
* Improve expressability?
* |Improve productivity?
» Get us to Exascale and beyond?
Efforts:
— Miniapp focus (far upstream from when real apps are available).
- Broad sampling of app domains & algorithms:
» Plasma physics & particle-in-cell (PIC)
* Nuclear engineering & finite volume/eigensolvers.
» Shock physics & finite element/explicit time integration.
= Computational mechanics & implicit sparse solvers.

63

Recent highlights

Ramp up of full apps effort complete:

-~ Mike Heroux, et. al. — Overall lead, SNL
engineering apps.

-~ Matt Anderson, et. al. — IU (ongoing).

- Tom Evans, ORNL, nuclear engineering apps at EX ®
extreme scale.

— Alice Koniges, LBL/NERSC, plasma, PIC.
SPN (Denovo Nuclear Eng miniapp) ready for release.
HPCG (TOP 500 benchmark code) ported to XPI/HPX.

MiniAMR: New CTH-like miniapp. [H] P@@

C/C++ versions of GTC/PIC codes under evaluation. b Pertonance ConllareGracints
Alternative (non-Poisson solve) PIC algorithms.

INHIilee

64

Efforts

Use of Futures:
— Exploit previously inaccessible, fine-grain dynamic parallelism.
— Natural framework for expressing data-driven parallelism.
- SPN, HPCG, MiniAMR.
Better than MPI.
- Beyond functional mimic of MPI.
-~ AGAS: Truly adaptive mesh refinement.
Overarching goal: Demonstrate that Parallex-based approaches:
- Work.
— Superior to MPI+X in one or more metric:
» Performance: Extracting latent parallelism.
» Portability: Performance obtained from system’s underlying runtime.
* Productivity: Easier to write, understand, maintain.

65

http://xstack.sandia.gov/xpress

-
XPRESS Update - April 10, 2014

